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Active flight, characterized in birds by wing flap-
ping, requires greater power output than swim-
ming,walkingor running (Schmidt-Nielsen, 1972;
Harrison&Roberts, 2000). The power required for
flight varies as a function of flight speed approx-
imately according to a U-shaped curve, withmore
power required for hovering and fast flight than for
flight at intermediate speeds (Pennycuick, 1975;
Rayner, 1985; Tobalske et al., 2003; Askew &
Ellerby, 2007; Tobalske, 2007). Metabolic rates
during flight are up to 30 times greater than
basal metabolic rate (Nudds & Bryant, 2000). We
begin this chapter by exploring the anatomy of the
muscles that generate this power output and the
skeletal elements that provide support for these
muscles. In separate sections we then examine
how the functional morphology of the flight appa-
ratus affects flight performance. In each case, we
observe that wing morphology and body size are
key elements governing flight performance. We
begin with the ontogeny of flight ability in preco-
cial birds and use this model system to describe a
novel, testable model for the origin of flight. We
then turn to a style of flight that requires high
power output: vertical escape after take-off. Next,
we examine intermittent flight styles that offer
energetic savings relative to continuous flapping.
We move to maneuvering, an area that clearly
needs new data and a modern synthesis since

much of what is predicted about the ability to
maneuver is based upon fixed-wing aero-
dynamics, pertinent only to gliding, and the
highly flexible, morphing bird wing is scarcely
everfixed in shape, even during glides. Finally,we
turn to hovering, the ultimate exertion of control
during flight.

FUNCTIONAL MORPHOLOGY OF THEWING

There are a variety of features of the wings of birds
that are associated with the production of high
power output. The primary flightmuscles include
the major downstroke muscle, the pectoralis, and
the major upstroke muscle, the supracoracoideus
(Figure 10.1). Empirical studies of the function of
these muscles using in vivo electromyography,
sonomicrometry, and bone strain measurements
aswell as in vitro ergometry all indicate that these
two muscles are generally designed to produce
relatively high force per unit cross-sectional area
(stress) while undergoing a relatively large length
change (strain) during contraction (Dial et al.,
1997; Biewener et al., 1998; Hedrick et al., 2003;
Tobalske et al., 2003; Askew & Ellerby, 2007;
Figure 10.2). While the pectoralis is comprised
exclusively of fast-twitch fibers in most flying
birds, some soaring birds have a deep anterior
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Fig. 10.1 The primary flight mus-
cles in bird flight are the supracor-
acoideus (SUPRA) and pectoralis
(PECT). These muscles function
to decelerate and accelerate the
wing, and these functions have
been revealed in vivo using sono-
micrometry transducers to mea-
sure changes in muscle length,
and electromyography to measure
neuromuscular activation. (From
Tobalske & Biewener, 2008.)

Fig. 10.2 In flying birds, the primary flight muscles appear to be designed to maximize the output work and power
rather than isometric force. (A) This conclusion has emerged from in vivo measures of mechanical work that are
obtained using sonomicrometry, electromyography, and strain-gauge measurements on the deltopectoral crest (DPC)
of the humerus. These data reveal length change, neuromuscular activation, and force development in themuscle (B).
Plotting muscle force as a function of muscle length produces a work loop (C); the area inside the work loop is the net
work-output by the muscle (From Hedrick et al., 2003; Tobalske et al., 2003.)
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portion of their pectoralis that consists of slow
fibers and is thought to be a specialization for
maintaining economical isometric contractions
(Rosser & George, 1986a,b; Rosser et al. 1994;
Meyers & Stakebake, 2005).

During flapping, the pectoralis muscle
decelerates the wing at the end of upstroke and
reaccelerates it at the beginning of downstroke
(Dial, 1992a). The peak force observed in themus-
cle occurs at the middle of downstroke
(Figure 10.2a), and the muscle typically changes
between 20 and 42% of its resting length during
contraction (Figure 10.2b). The large stress and
strain in the muscle are evident in work loops
obtained from in vivo measurements (Figure
10.2c). The area inside the work loop is a measure
of work output by the muscle, and the rate of
accomplishing this work, a function of wingbeat
frequency, is the power output by the muscle.

Similar length change (muscle strain) and even
higher force per unit area (muscle stress) are exhib-
ited by the primary upstroke muscle, the supra-
coracoideus (Figure 10.1). Thismuscle decelerates
the wing at the end of downstroke and reaccele-
rates it at the beginning of upstroke. A key func-
tion of the supracoracoideus is to accomplish
long-axis rotation (supination) of the wing during
the transition between downstroke and upstroke
(Poore et al. 1997; Tobalske & Biewener, 2008).
The supracoracoideus features a long tendon that
inserts dorsally on the proximal humerus via a
foramen triosseum that is bordered by the cora-
coids, furcula, and scapula (Baumel et al., 1993).
The tendon elastically stores and releases energy
put into by the supracoracoideus, and this process
may contribute up to 60% of the net work of the
muscle (Tobalske & Biewener, 2008). The furcula
may also function to elastically store and release
energy (Jenkins et al., 1988).

It may be that the pectoralis is the minimum
muscle required for level flappingflight in birds, as
experiments have shown that birds can fly with-
out use of their supracoracoideus (Sokoloff
et al., 2001) or the distal muscles of the forearm
and wrist (Dial, 1992b). However, future study
should seek to clarify the relative contribution
of other muscles of the wing to power output.

Consider, for example, the scapulohumeralis cau-
dalis. This is the third largest muscle of the wing,
it inserts ventrally on thehumerus, and the timing
of its activation suggests that it is involved inwing
pronation and depression at the start of down-
stroke (Dial, 1992a). Based upon patterns of neural
recruitment, the intensity of electromyography
signals, it is thought that the distal muscles of
the wing are primarily used to alter wing shape to
permit a bird to engage in different modes of flight
or maneuver. A four-bar linkage system made up
of the humerus, radius, ulna, and proximal meta-
carpus is hypothesized to automatically flex and
extend the distal wing when proximal muscles
such as the pectoralis are activated (Dial, 1992b).

Skeletal elements provide surface areas for the
origins and insertions of the wing muscles, and,
acting as levers, they transmitmuscle forces to the
air. Key features of the skeleton that support pow-
eredflight include the proportionallymassive keel
of the sternum, the enlarged deltopectoral crest
(DPC) of the humerus, and the strut-like, stout
coracoids (Figures 10.2a and Figures 10.3). The
keel provides the origin for the pectoralis and
supracoracoideus, and the deltopectoral crest
provides the insertion for the pectoralis.

Fig. 10.3 The ventral side of the deltopectoral crest of
thehumerus (seen inmedial view) is the insertion site for
the primary downstrokemuscle, the pectoralis. There is
considerable diversity of shape in the deltopectoral crest
as is evident in this comparison of bones from a ring-
necked pheasant (Phasianus colchicus) and a rock dove
(Columba livia). (From Tobalske & Dial, 2000.)
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Proportionally large areas for muscle attachment
presumably lessen the risk of detachment by hold-
ing tendon stress (force per unit area) below the
point of failure, although this safety factor has not
been studied explicitly for the pectoral girdle of
birds. Among species, there is considerable diver-
sity inDPC size and shape (Figure 10.3). Since this
is the point of force transmission from the pector-
alis to the rest of thewing, with clear implications
for the majority of the lift produced by the wing,
the functional significance of the diversity inDPC
shape deserves study. The coracoids are oriented
and shaped to resist compression of the thorax
during contraction of the pectoralis and supracor-
acoideus (Pennycuick, 1968; Baier et al., 2007).
The furcula shows variation in form that is con-
sistent with different uses of the wing, and flap-
pingfliers exhibit less variation in shape compared
with, for example, soaring birds or subaqueous
flappers (Hui, 2002). As the furcula can contribute
to elastic energy storage (Jenkins et al., 1988),
comparative mechanical analysis of the furcula
is also warranted.

ONTOGENY AS A MODEL FOR THE
EVOLUTION OF FLAPPING FLIGHT

Few subjects in science ignite such polarizing dis-
cussions as the origin and evolution of avian pow-
eredflight.Until recently, the vast literatureon the
subject remained firmly entrenched within two
camps referred to as the ground-up (cursorial) and
tree-down (arboreal) proponents (for review see
Witmer, 2002). Cursorial hypotheses contend
that the ancestors of birds ran bipedally using
their long and slender theropod hind limbs, while
their clawed and feathered forelimbs functioned to
grab prey. Flapping the forelimbs in order to gen-
erate aerodynamic power and sustain powered
flight came later.Anextantmodel for this behavior
is not apparent. The arboreal hypothesis suggests
proto-birds quadrupedally climbed trees or other
elevated structures to gain potential energy and
thenglideddownwards (asobserved inextantflying
squirrels, e.g.Glaucomys; Bishop, 2006). The puta-
tive sequenceof stepsbetweenglidingandpowered

flight is not fully resolved. Dudley et al. (2007)
maintain that small motions of the appendages
permit ananimal tocontrol thedirectionofdescent
during a glide, thus offering a precursor to flapping.
Likewise, small-amplitude flapping motions may
contribute to stability in flying squirrels (Bishop,
2006). Significantly, though, no extant gliders
have been observed to actively flap their webbed
appendages or fins (e.g. flying fish, Exocoetidae,
Davenport, 1994) in an effort to produce thrust
and extend their glide distance. An alternative,
hypothesis-based approach to the origin of
avian flight, explored by Garner et al. (1999)
gave rise to a “pouncing predator” model,
which satisfies several major phylogenetic
assumptions. Nonetheless, an extant analog of
the pouncing predatory model has also not been
identified, so it is not presently possible to
empirically test the functional morphology –
mechanics and physiology – of the model.

Where can we find extant analogs to the origin
of powered flight in birds?Where else can one find
an incipient avian wing but on a baby bird? Before
juvenile birds can fly, they readily use their wings
in a form of escape behavior known as wing-
assisted incline running (WAIR) that consists of
flapping the wings during climbing (Dial, 2003;
Dial et al., 2006). This escape behavior may be
used by ground-dwelling species such as the Gal-
liformes when they have access to a sloped terrain
(cliff, boulder, tree, etc.), and is common among
nestlings of a diverse array of bird species (Dial
et al., 2008b). If partially developed wings in pre-
cocial birds are reasonably analogous to the incip-
ient wings that the presumed ancestors ofmodern
birds possessed, then the ontogeny of WAIR in
extant species offers a novel, testable biomechan-
ical model for the origin of powered flight in birds
(Bundle&Dial, 2003;Dial, 2003;Dial et al., 2006).
This model assumes development in external
wing morphology is representative of transitional
adaptive stages (Bock, 1965) that led to the com-
plex structure of the extant avian wing. An obvi-
ous limitation of the model is uncertainty in how
extant avian neuromuscular control and contrac-
tile behavior as well as external wing motions
compare with ancestral forms.
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During ontogeny in chukar partridge (Alectoris
chukar), feathers are structurally symmetrical (i.e.
equal feather surface on either side of rachis) from
day 6 through to day 14 (Figure 10.4). Potentially
analogous feather symmetry is apparent in thero-
pod fossils hypothesized to represent ancestors of
extant birds (Quiang et al., 1998;Xu et al., 1999). In
chukars, wing surface area increases in a near-
linear fashion with age during the first 30 days
and is asymptotic by day 45. The growth in body
mass is such that wing loading (weight per unit
surface area of the combined wings) remains rel-
atively constant throughout their normal growth
phase, with the lowest wing-loading values
recorded during the first 30 days of development.

In adult chukar, there is no significant variation
in the patterns of wing motion used during
WAIR, descending, and level flight (Dial et al.,
2008b; Figure 10.5). Likewise, developing birds
move their incipient wings, and, later, their

fully developed wings, through a stereotypic kine-
matic pathway so that they may flap–run over
obstacles, control descending flight and ulti-
mately perform level flapping flight (Figure 10.5).
As the same basic wingmotion can allow an adult
bird to accomplish disparatemodes of locomotion,
and baby birds use this basic pattern of wing
motion before they can fly, Dial et al. (2008b)
proposed an “ontogenetic–transitional wing
hypothesis” that the transitional stages leading
to the evolution of avian flight correspond both
behaviorally and morphologically to the transi-
tional stages observed in ontogenetic forms.

To reveal the aerodynamics of incipient wings
duringWAIR,Tobalske&Dial (2007) usedparticle
image velocimetry (PIV) and measured flow
dynamics in the wake of these animals as they
engaged inWAIRand ascendingflight (Tobalske&
Dial 2007; Figure 10.6). The ontogeny of lift pro-
duction was evaluated using three age classes:

Fig. 10.4 Wing and feather development
for the chukar partridge (Alectoris
chukar) during ontogeny. By day 8, flap-
ping the wings provides aerodynamic
force that enhances the ascending and
descending performance of the chicks.
(From Dial et al., 2006.)

Morphological and Behavioral Correlates of Flapping Flight 263



baby birds incapable of flight (5–8 days post-hatch-
ing) and volant juveniles (25–28 days) and adults
(45þ days). All three age classes of birds, including
baby birds with partially emerged, symmetrical
wing feathers (Figure 10.6), generate circulation

with their wings and share a wake structure that
consists of discrete vortex rings shed once per
downstroke. Unlike during flight when the
wings produce lift to support body weight and
match drag, during WAIR, lift from the wings

Fig. 10.5 Locomotor development during ontogeny in the chukar partridge (Alectoris chukar) from hatching to
adulthood. The sequence of transitional stages during development in an extant species may be relevant to under-
standing the origin and evolution of extinct forms. Stroke curves represent the trajectory of the wing during wing-
assisted incline running (WAIR) (grey) and flight (black). Vectors indicate average lift during WAIR (grey) and the
estimated lift (black) during slow level flight and descent. (From Dial et al., 2008b.)
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accelerates the body toward the surface of the
substrate being climbed, thereby increasing fric-
tion and aiding the feet in gaining purchase. These
data show that partially developed wings, not yet
capable of flight, can produce useful lift during
WAIR.

These aerodynamic experiments show that
factors besides external wing morphology may be
functioning as primary constraints upon the onset
of flight ability during development (Tobalske &
Dial, 2007). Potential variables that should be
tested include neuromuscular control and power
output of the muscles moving the wings. None-
theless, the aerodynamics ofWAIR in baby chukar
provides new insight into how an ancestral incip-
ient wing that was not capable of supporting flight
may have been an exaptation (Gould&Vrba, 1982)
originally used solely for WAIR.

TAKE-OFF AND ESCAPE FLIGHT

When flying to escape a predator, or voluntarily
initiating flight from the ground, take-off and the
gain in potential energy that occurs during flight

demand more power than most other forms of
flight (Pennycuick, 1975; Rayner, 1979a,b, 1985;
Ellington, 1991). Although some of the mechan-
ical power from the flight muscles is used to
overcome profile (pressure and skin-friction)
drag on the wings, the majority of power output
during take-off and vertical flight is used to
induce a massive downward velocity to the air.
Induced power is the product of this induced
velocity multiplied by body mass and any net
vertical or horizontal acceleration (including
gravity) (Askew et al., 2001). More broadly, flight
speeds at take-off are relatively slow, and induced
power output is modeled as being greatest at low
speed, decreasing exponentially with increasing
air velocity over the wing.

Since few birds are capable sustaining flight at
zero velocity (see Hovering, below), and accelera-
tion requires even more muscle power than hov-
ering, take-off imposes induced-power demands
beyond the capabilities of most avian wings. Birds
therefore depend on their legs to provide assis-
tance. The contribution of the legs to the velocity
of the bird at the end of take-off, defined as the end
of the first downstroke after the feet have left the

Fig. 10.6 Airflow in the wake of a
flightless chukar partridge (Alec-
toris chukar) chick engaged in
wing-assisted incline running.
Velocity in the flow field was
revealed using particle imagery
velocimetry (PIV); thewake reveals
evidence of lift production in a
manner similar to juvenile and
adult birds that are capable of
flight. At day 8 of development,
the chick has symmetrical remiges
(inset, upper right). (Adapted from
Tobalske&Dial,2007.) [Thisfigure
appears in color as Plate 10.6.]
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ground varies from 59% (rufous hummingbird,
Selasphorus rufus; Tobalske et al., 2004) to 90%
(blue-breasted quail, Coturnix chinensis; Earls,
2000). Peak jumping forces can be as low as 1–3
times body mass during voluntary take-off
(Heppner&Anderson,1985;Bonser&Rayner,1996)
and reach about 4–5 times body weight in escape
flight in the passerines (Passeriformes; Earls, 2000;
Jackson, unpublished data) and 7.8 times body
weight in blue-breasted quail (Earls, 2000).

The legs are only in contact with the ground for
a fraction of a second, so the wings must eventu-
ally take over, and short wings are better suited for
rapid take-off. Power output is a function of work
perwingbeat (Figure 10.2b) divided by the duration
of thewingbeat.Thus, everything else being equal,
the higher the wingbeat frequency, the more
induced power a bird can produce, and the quicker
it can accelerate vertically. Within a group of
similarly shaped birds (Tobalske & Dial, 2000),
wingbeat frequency during take-off decreaseswith
increasing body mass (m), approximately propor-
tional to the cube-root ofmass (m"1.3). Comparing
species of different wing shapes but similar mass,
however, it appears that wingbeat frequency is
inversely related to wing length (Pennycuick,
1996). Consider, for example, a species such as
an albatross (Diomedeidae) with long and pointed
(high aspect ratio)wings.Although thewing shape
is thought to be extremely efficient for gliding, the
birds have a difficult time getting off the ground,
and usually have to run into prevailing winds
before taking off (Pennycuick, 1975). Compara-
tively, a gallinaceous bird of similar mass such
as the wild turkey (Meleagris gallpavo), which has
short and roundedwings, is ideally suited for high-
acceleration take-off (Tobalske & Dial, 2000;
Askew et al., 2001).

During take-off and vertical flight, birds must
use muscle power to do work to raise their center
of mass against gravity and to accelerate.
The amount of mechanical power produced by
the muscles in relation to body-mass (i.e. mass-
specific power) therefore largely determines the
actualflightperformance.Extantflyingbirds range
in mass from a 2 g bee hummingbird (Mellisuga
helenae) to a 14kg mute swan (Cygnus olor;

Dunning, 1993). While it is readily observed that
a swan isnot capable ofhoveringat afloweror even
taking-off vertically like a hummingbird, the
underlying mechanism, the mass-specific power
available for flight relative to the amount required,
is not fully understood. Bird species in general
scale isometrically (Greenewalt, 1962), meaning
that muscle masses are the same proportion of
body mass, and wing-lengths are the same propor-
tion of body length. Scaling theory would, there-
fore, predict that available mass-specific power
should scale proportional to wingbeat frequency
(m"1/3; Hill, 1950; Pennycuick, 1975; Elling-
ton, 1991). According to this line of reasoning,
since large species tend to have lower wingbeat
frequencies, their muscles produce less mass-
specific power, which translates into lower take-
off performance compared to smaller species. This
could account for the observed trend of decreasing
take-off performance with increasing size in birds
if the mass-specific power required for flight is
independent of body mass (Figure 10.7; Tobalske
&Dial, 2000;Dialet al., 2008a).Ontheotherhand,
aerodynamic modeling suggests that the mass-
specific power output during take-off actually
increases with body mass (Askew et al., 2001).
Consistent with the notion that mass-specific
power is not limiting flight performance in larger
birds, proportional load-lifting ability increases
with increasing body mass (Marden, 1994) and
larger hummingbirds exhibit greater ability to
climb with added load or support their weight in
reduced-density air compared with smaller hum-
mingbirds (Chai & Millard, 1997; Altshuler
et al., 2004). For hummingbirds, nonisometric
scaling of muscle morphology or physiology may
compensate for the impact of body mass (Chai &
Millard, 1997). While variation in relative muscle
mass, muscle morphology, and fiber physiology,
and wing shape and size all could explain some of
thevariation intake-offperformance,body-mass is
likely a fundamental determinant of burst flight
performance during take-off.

Some bird species experience significant fluc-
tuations in body mass due to migratory fat loading
or egg production. Since their body mass increases
but muscle mass and wing size typically do not,
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individuals of these species may experience
reduced take-off performance (Hedenstr€om&Aler-
stam, 1992; Witter et al., 1994; Kullberg
et al., 1998). The trade-off between fat-loading to
decrease risk of starvation vs. foraging minimally
to maintain take-off and predator-escape perfor-
mance is a rich area of study. However, not all
species demonstrate reduced take-off performance
with fat-loading, some reduce acceleration or
velocity, while others reduce only the angle of
ascent. The factors that drive the variation in
strategy, and the ecological and evolutionary imp-
lications of this trade-off, are mostly unknown.

INTERMITTENT FLIGHT

The vastmajority of small andmedium sized birds
use one of two forms of intermittent flight during
which they regularly interrupt flapping phases to
hold their wings either in a flexed-wing “bound”
posture, during which the wings are held tightly
against the body, or in an extended-wing “glide”
(Rayner, 1985; Tobalske, 2001; Figure 10.8). Some
species, such as the budgerigar (Melopsittacus
undulatus) use bounds, glides, and partial-bounds

during which the wings are partially extended
(Tobalske & Dial, 1994). These flight styles are
characterized by undulating flight paths as the
birds gain altitude using flapping and lose altitude
during the fixed-wing pauses (Figure 10.8). The
flight style of the black-billed magpie (Pica

Fig. 10.7 Vertical escape-flight per-
formance in three orders of birds
spanning three orders of magnitude
ofbodymass:Galliformes (squares),
Columbiformes (circles), and Pas-
seriformes (triangles). Whole-body
(external) mass-specific power out-
put is proportional tomass raised to
the "0.3 power (m"0.3). (From Dial
et al., 2008a.)

Fig. 10.8 Intermittent flight features regular, brief
pauses in between flapping phases. A bound occurs if
the bird flexes its wings against its body and a glide
occurs when the birds holds its wings extended. Some
species exhibit intermediate wing postures (partial
bounds or glides).
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hudsonia) is a novel form of intermittent flight,
which consists of regular variation in wingbeat
frequency and amplitude duringflapping phases as
well as intermittent bounds and glides (Tobalske
et al., 1997). Flap-bounding is readily observed
during foraging and migratory flights in many
small passerines (Passeriformes; Danielson, 1988)
and woodpeckers (Picidae; Tobalske, 1996). Flap-
gliding flight is exhibited during flight in a diverse
array of birds including swallows (Hirundinidae;
Bruderer et al. 2001), swifts (Apodidae), accipiters
(Accipitridae), wood pigeons (Columba palum-
bus), and northern harriers (Circus cyaneus).

Intermittent flight appears to be a strategy for
saving energy by reducing the average power
required for flight in comparison with that
required for continuously flapping. Mathematical
models developed from aerodynamic theory indi-
cate that flap-bounding can be an attractive strat-
egy when flying relatively fast (Rayner, 1985;
Ward-Smith, 1984a), while flap-gliding may offer
greater advantages at slower speeds (Ward-
Smith, 1984b; Rayner, 1985). The production of
lift by the body and tail may help extend the range
of aerodynamically attractive speeds for flap-
bounding to include maximum range speed, the
speed predicted to be optimal for sustained cruis-
ing flight (Rayner, 1985; Tobalske et al., 1999).
Measurements of body acceleration and wake
dynamics in live birds as well as force measure-
ments on prepared specimens all indicate that
birds can support 10–15% of their body weight
even with their wings fully flexed in a bound
posture (Csics"aky, 1977; Tobalske et al.,
1999, 2009). The contribution of “turn-out”
phases during which the wings are extended
after a bound may allow flap-bounding to offer
an advantage over a broad range of speeds
(DeJong, 1983). Likewise, variation in flight
speed and thrust can result in predicted energetic
advantages for both flap-bounding and flap-gliding
over a wide range of speeds (Rayner et al., 2001).
Kinematics reveal that variation in flight speed is
typical of intermittent flight (Tobalske, 1995;
Tobalske et al., 1999), and correlations between
body motion and muscle activity suggest that
thrust likely varies as well (Tobalske & Dial,

1994; Tobalske, 1995; Tobalske et al., 2005;
Askew & Ellerby, 2007).

Activity in the major flight muscles decreases
during intermittent pauses compared with during
flapping phases (Meyers, 1993; Tobalske &
Dial, 1994; Tobalske, 1995, 2001; Tobalske
et al. 2005; Askew & Ellerby, 2007; Figure 10.9).
During intermittent glides, the pectoralis exhibits
an isometric contraction and the supracoracoi-
deus is inactive, whereas during bounds, both
muscles are inactive (Tobalske, 2001). Sonomicro-
metry reveals that the pectoralis does not change
length during intermittent pauses (Tobalske
et al., 2005; Askew & Ellerby, 2007).

There are prominent effects of body size and
wing shape upon the performance of intermittent
flight. Small birds with rounded, low-aspect ratio
wings such as the zebra finch (Taeniopygia gut-
tata; 13 g; aspect ratio,AR¼ 4.2) appear to only use
intermittent bounds (Tobalske et al., 1999, 2005).
In contrast, species of about the same body mass
but with more pointed, high-aspect-ratio wings
such as the barn swallow (Hirundo rustica; 20 g;
AR¼ 6.2) andhousemartin (Delichonurbica; 17 g,
AR¼ 6.5), use both bounds (or partial bounds) and
glides (Bruderer et al., 2001). Regardless of aspect
ratio, species of intermediate mass between 34 g
budgerigars (AR¼ 7.1) and 150 g black-billed mag-
pie (AR¼ 4.1) use both forms of intermittent
flight. Above 300 g, birds do not appear to be
able to use intermittent bounds so, for example,
the rock dove, Columba livia only uses gliding
during pauses in wing flapping (Tobalske &
Dial, 1996).

What limits the upper-size range for the ability
to bound?The largest species observed to regularly
bound is the pileated woodpecker (Dryocopus
pileatus; 270 g; Tobalske, 1996, 2001). As
described above for whole-body power output dur-
ing take-off and vertical flight performance, there
is an observed decline in the performance of
bounds as body size goes up. The percentage of
time spentflapping increaseswith increasing body
mass among passerines engaged in migratory
flight (Danielson, 1988) and woodpeckers engaged
in foraging flight (Tobalske, 1996, 2001; Figure
10.10). The scaling is proportional to mass raised
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Fig. 10.9 Patternsofwingandbodymotionandmuscle contractile behavior duringflap-boundingflight in a zebrafinch
(Taniopygia guttata). The bird gains altitude during the latter half of flapping phases and loses altitude during the latter
half of bounds. The pectoralis is inactive during bounds: there is no neuromuscular activity as measured using
electromyography, and there is no change in muscle length as measured using sonomicrometry. (From Tobalske
et al., 2005.)

Fig. 10.10 The percentage of time spent flapping
during flap-bounding flight in 12 passerine (Pas-
seriformes, open circles) and seven woodpecker
(Picidae) species varying in mass from 10 to 250 g.
Percent time flapping scales proportional to body
mass raised to the 0.37 power (m0.37). (From
Tobalske, 2001.)
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to the 0.37 power (m0.37). A potential explanation
for this is that the sustainablemass-specific power
available fromtheflightmuscles is proportional to
wingbeat frequency, and, therefore, decreases as a
function of increasing body mass (Hill, 1950;
Pennycuick, 1975). Consistent with such a
hypothesis, wingbeat frequency scales propor-
tional to m"0.37 in flap-bounding birds (Tobalske,
1995) Alternatively, the lift per unit power output
may decrease with increasing bodymass (Marden,
1994). The aerodynamic mechanisms responsible
for this decrease in relative lift production need to
be measured empirically.

Flight speed has significant effects upon inter-
mittent flight behavior as it appears to influence
the percentage of time spent flapping aswell as the
nonflapping postures adopted during intermittent
pauses. In zebra finch, a species that only flap-
bounds, there is a decrease in time spent flapping
from 89% during brief hovering episodes to 55%
during fast forward flight (14ms"1). In the bud-
gerigar and European starling, species that use
both intermittent bounds and glides, the percent-
age of time spent flapping varies according to an
upwardly concave, “U-shaped” curve (Tobalske,
2001). Similarly, mean effective wingbeat fre-
quency varies as a U-shaped curve in barn swal-
lows and house martins (Bruderer et al., 2001).
Among the species that use both bounds and

glides, there is a tendency to flap-glide at slow
speeds and flap-bound during faster flight
(Tobalske & Dial, 1994; Tobalske, 1995; Bruderer
et al. 2001; Figure 10.11). However, recent
research did not reveal the same trend to switch
from the use of bounds to the use of glides as flight
speed increased in rose-colored starlings (Sturnus
roseus; Engel et al., 2006).

MANEUVERING

The high velocities – and hence, kinetic energy –
characteristic of flight must place a selective pre-
mium on control. Clearly, the broad utility of
avian flight would not have been realized without
development of effective stability and maneuver-
ing (Thomas & Taylor, 2001; Taylor & Thomas,
2002; Warrick et al., 2002).

Duringgliding (e.g.Pennycuick,1971), amaneu-
vering bird can be described by well-understood
aircraft dynamics: turns are effected by creating a
bilateral force asymmetry, imparting a rolling
moment about the longaxis of thebody toestablish
a bank angle, thus redirecting the lift force to
provide a centripetal force. Maneuverability in
this case has been defined by radius of turn (Nor-
berg & Rayner, 1987); with a fixed-wing assump-
tion, the radius of turn will be determined by wing

Fig. 10.11 Flight speed affects the type
of wing posture assumed during inter-
mittent pauses in some species. These
data, from European starlings (Sturnus
vulgaris), show the percentage of
bounds (white), partial bounds (gray),
and glides (black) among all nonflap-
ping phases exhibited at a given
speed. As speed increased, the percent-
age of glides decreased while the per-
centage of bounds increased. (From
Tobalske, 1995.)
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loading (mass$wing area"1; Pennycuick, 1971).
Even given the assumption of fixed-wings,maneu-
verability has considerable explanatory power; var-
iation in wingloading and maneuverability have
been used to cogently describe differences in hab-
itat use in bats (Aldridge, 1987; Norberg & Ray-
ner, 1987), and foraging behavior and prey selection
in swallows (Warrick, 1998). Further, theyhave the
desirable feature of being among the few flight
performance parameters that can be inferred
when the fossil record provides reliable estimates
of bodymass andwing area (e.g. Pennycuick, 1988).

To create force asymmetries to produce roll, a
bird can manipulate one or more lift variables:
wing surface area, angle of attack, or wing
speed. In fast gliding flight, a bird can merely
increase the angle of attack by supinating a
wing, while simultaneously pronating to decrease
angle of attack on the other. Thewings can be used
to createmoments around the other two body axes
aswell. Bymoving thewings’ center of lift forward
or aft of the bird’s center of mass, birds create
pitching rotation to change whole-body angle
(Thomas & Taylor, 2001). Likewise, any asymme-
try in area or angle of attack will produce not only
differential lift but also differential drag, causing
yawing rotations.

Agility, the ability to create angular velocities
in rolling, pitching, or yawing movements, has
been distinguished from maneuverability (Nor-
berg & Rayner, 1987) as a meaningful perfor-
mance criterion of its own for some ecotypes
(e.g. coursing insectivorous birds such as swal-
lows (Hirundinidae; Warrick, 1998). However, as
function of the strength of forces available rela-
tive to the inertia of a body around its three
rotational axes, most small birds are intrinsically
agile. Viewed another way, relative to their
terrestrial ancestors, birds are intrinsically unsta-
ble – perhaps a result of selection for a compact
and therefore robust body able to withstand the
rigors of high frequency, periodic support (Taylor
& Thomas, 2002).

While the tail during low-speed flight seems to
be restricted to acting as a lifting device (Gatesy&
Dial, 1996; Thomas, 1996a,b; Berg & Biewener,
2008), at high speed the avian tail can function in

pitch and yaw control, both to augment maneu-
vering performance and stabilize level flight
(Thomas & Taylor, 2001). Unilaterally depressing
the tail creates a laterally directed force and yaw-
ingmoment (Hummel, 1992; Thomas, 1993) away
from the depressed side of the tail. Functioning
much like the rudder of an airplane, this force can
thus be used for countering the so-called adverse
yaw that is created during wing asymmetries,
when the higher lift wing must also create more
drag, yawing the animal in a direction opposite to
its intended direction of flight (Warrick, 1998).
Empirical (Hummel, 1992) and theoretical
(Thomas, 1993) studies show that the forces cre-
ated by the tail are small relative to those created
by the wings. This may make the tail even more
useful as a stabilizing device; its ineffectiveness
allows coarse motor control to produce fine-scale
aerodynamic force.

For a complete understanding ofmaneuverabil-
ity in birds, a fixed-wing assumption is inade-
quate. But abandoning it introduces a staggering
level of complexity; not surprisingly, no single
functional pathway for thecontrol ofmaneuvering
during flapping flight has yet been identified.
However, studies of the dynamics ofmaneuvering
flight illustrate both the central role of the pectoral
architecture and the importance of the intrinsic
wing muscles in controlling slow, flapping flight.

Assuming an aerodynamically inactive – or
simply less active – upstroke (Rayner, 1979a;
Tobalske, 2000), maneuvering in slow flight will
be to some degree a saltatory affair. That is, when
aerodynamic force production ceases, the centrip-
etal force ceases, and the bird will move in a
straight line until the next downstroke.Neverthe-
less, the smallest radius turn – a radius of zero – is
available only to a flapping bird: in a hover, no
centripetal force is required, and the bird simply
rotates around its center mass and heads off in a
newdirection.More generally, a bird able tomain-
tain high incident air velocity over its wing
through flapping, while the velocity of the body
is low, will produce turns of small radius.

As in gliding flight, birds may modulate aero-
dynamic force by varying surface area and angle of
attack, but, during flapping, they may also vary
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downstroke velocity. The kinematics of pigeons
(Warrick & Dial 1998; Figure 10.12) and parrots
(Psittaciformes; Hedrick & Biewener, 2007a;
Hedrick et al., 2007) show that birds use asymme-
tries in downstroke velocity – and to some degree
in pigeons, upstroke – to create roll and yawduring
slow flight. Both were shown to produce these
asymmetries in the first half of downstroke, and
reverse the asymmetry in the second, thus halting
the rolling momentum before the upstroke. War-
rick & Dial (1998) assumed that the velocity
asymmetries observed were used to create aerody-
namic force asymmetries, but Hedrick & Biew-
ener (2007a,b) and Hedrick et al. (2007) showed
that birds may also take advantage of the body
rotations resulting from asymmetric wing move-
ment. This inertial reorientation was shown to be
particularly important in changing body angle
within a wingbeat, and allows for an immediate,
transient, and easily reversed bank angle. As these

studies illustrate, the ability to produce transient
bank within a wingbeat, with no net change in
bank, gives the maneuvering bird an opportunity
to move stepwise through its environment.

Patterns of wing motion (Warrick & Dial 1998;
Hedrick& Biewener 2007a,b; Hedrick et al., 2007;
Figure 10.12) andmeasurements of the force expe-
rienced by the wings (Warrick et al., 1998;
Figure 10.13) show that birds frequently produce
a series of asymmetries, with higher force on the
outside wing, rather than simply creating a bank,
holding that bank and flying symmetrically
through the turn.While there has beenno rigorous
examination of the advantages of this maneuver-
ing strategy, the higher success of pigeons exhib-
ited this pattern in negotiating an obstacle course
(Warrick et al., 1998), and the proficiency of both
these phylogenetically distant species in creating
these incremental maneuvers, suggests that slow
maneuvering flight is a tightly controlled

Fig. 10.12 Three dimensional kinematics (A, B) and wing and body orientation (C) of a rock dove (Columba livia)
maneuvering after being held inverted and then dropped. Wingtip (right¼ grey; black¼ left) and body (bold black)
kinematics of a pigeon, held inverted and dropped.With one asymmetrical wingbeat, the pigeon rights itself; with two
further wingbeats (200ms) it has arrested its descent, and flies to a perch. (D.R.Warrick, unpublished data.)
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behavior.Whether reorienting throughasymmetry
in aerodynamic force production or inertia, these
studies illustrate the intrinsic instability of
birds (roll accelerations greater than 20,000% s"2;
Warrick & Dial, 1998; Hedrick & Biewener,
2007a,b; Hedrick et al., 2007). However, a theoret-
ical examination of stability in flapping flight sug-
gests that symmetrical flapping itself does little to
destabilize the bird (Taylor & Thomas, 2002).

While we currently lack a complete description
of the muscular control of these maneuvering
events, electromyogram (EMG) studies of rose-
breasted cockatoos (Eolophus roseicapillus;
Hedrick&Biewener, 2007b) anddenervation stud-
ies of pigeons (Dial, 1992a) suggest that distal
muscles may function to modulate the activity
of the pectoralis through pronation, supination, or
flexion. While Hedrick & Biewener (2007a) found
nomuscle activity asymmetries in these intrinsic
wingmuscles consistently associated with partic-
ular maneuvering kinematics, these muscles did
display more asymmetry during maneuvering
than during level flight, suggesting a complex
synergism. In contrast, the asymmetry in recruit-
ment of the pectoralis was consistently correlated
with maneuvering kinematics. Thus it appears
that, as a primary provider of both aerodynamic
power and flapping wing inertia, the timing and
force production of the pectoralis is critical, and

may be the “key innovation” (Liem, 1973; also see
Raikow, 1986) in the evolution of control of low-
speed maneuvering flight.

HOVERING

As we have reinforced in this chapter, flight is an
energetic affair, and control is the purpose of
maneuvering; thus, no discussion of flight can
be complete without exploring how birds control
their kinetic energy by flying slowly. In this sense,
the ultimate flight maneuver is one that requires
no maneuvering at all: the hover.

True hovering – the ability to fly with incident
airspeed of zero over the body of the bird is an
option probably available to all small and
medium-sized birds (Pennycuick, 1975; Elling-
ton, 1991). Even if for only one or two seconds,
the flexibility it provides a bird in safely moving
through its environment – particularly during
landing – may be profoundly important (e.g.
Green & Cheng, 1998). Sustained hovering,
using aerobic metabolism for indefinite time
intervals (Lasiewski, 1963), is a different matter,
seemingly confined to hummingbirds (Trochili-
date).Hovering in still air is a particularly demand-
ing flight style in terms of power requirements
because the bird is solely responsible for inducing

Fig. 10.13 Peak force asymmetries (black points) at mid-downstroke measured at the deltopectoral crest of a pigeon,
superimposed on the obstacle course flown it was flying. The open points would be the expected asymmetry pattern if
thebirds simplyestablishedabankwithone force asymmetry and thenflewaroundthebarriers.Theblackvertical lines
indicate the position of the barriers around which the birds maneuvered. (From Warrick et al., 1998)
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a large downward velocity into the air to support
its weight. These induced high velocities require
high power output from the flight muscles. In
contrast, in forward flight, or during hovering
with a headwind in birds such as kingfishers (Cor-
aciiformes), incoming air (wind) contributes to the
production of lift and the induced velocities
required to support body weight are, therefore,
less (Pennycuick, 1975; Rayner, 1979a,b, 1985).

Thehovering abilityofhummingbirds is related
to their small body size (Altshuler & Dud-
ley, 2002):most specieshavebodymasses between
2 and 8 g, and the giant hummingbird (Patagona
gigas), unusually large for the family, is only 20 g
(Dunning, 1993). Hummingbirds also exhibit a
range of morphological and physiological specia-
lizations that are well suited for sustaining high
power output during hovering (Altshuler &
Dudley, 2002). For example, they have pectoralis
and supracoracoideus muscles with relatively
small-diameter fibers, high mitochondrial den-
sity, and high capillary density (Suarez et al.,
1991; Mathieu-Costello et al., 1992). These attri-
butes allow their muscles to sustain the highest
mass-specific metabolic rates known for verte-
brate skeletal muscle (Suarez et al., 1991). Their
primary flight muscles make up a relatively large
proportion of their body mass (ca. 25%; Green-
ewalt, 1962; Wells, 1993). Their wing dimensions
also exhibit positive allometry,meaning thatwing
length and area increase at a greater rate with
increasing body mass than one would expect
based on an assumption of geometric similarity
and observed trends in other clades of birds
(Greenewalt, 1962).

The first descriptions of the wing motions of
hummingbirds illustrated a wingbeat dramati-
cally different from all other birds (Stolpe & Zim-
mer, 1939;Greenewalt, 1962; Figure 10.14), which
quickly set them apart, likened them to insects
(Weis-Fogh, 1972;Wells, 1993), and eventually led
to two aerodynamic classifications of avian hov-
ering: symmetrical, and asymmetrical (Norberg,
1990). Aerodynamic symmetry of the two half
strokes was thought to be a prerequisite for sus-
tained, aerobic hovering, and the general similar-
ities between hummingbird and hovering insect

kinematics suggested a remarkable convergence
in form and function in these long divergent
(500þ Myr) taxa (Weis-Fogh, 1972). Attractive
though this suggestion was, direct measurements

Fig. 10.14 Wing motion during hovering in a hovering
rufous hummingbird (Selasphorus rufus). Black circles
indicate position of wingtips, and white circles indicate
position ofwrists. Circles and arrows indicate sequential
position and local direction of movement. (From
Tobalske et al., 2007.)
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of airflow in thewake of hummingbirds show that
the majority of weight support (75%) is provided
by downstroke (Warrick et al., 2005), and subtle
asymmetries between downstroke and upstroke
inwing velocity, area, camber, and long-axis twist
(Figure 10.15) result in a two- to three-fold dispar-
ity in the lift production. Previously, it was
unclear why the supracoracoideus to pectoralis
mass ratio is approximately 0.5 (Wells, 1993),
but relatively lower force production during
upstroke helps account for this.

Although it does not produce an equal amount
of force as downstroke, it is, nevertheless,
upstroke that appears to be unique in humming-
birds. During upstroke, they leave their wings
extended andmarkedly supinated. Their wingtips
trace a path through the air that resembles a
“figure-8” in lateral view (Figure 10.14). A dorsal
view reveals that the tips and wrists trace approx-
imately the same path during both halves of the
wingbeat. In contrast, other species flex their
wings to some extent during upstrokes of slow
flight andhovering. Birdswith roundedwings tend
to adduct their entire wing during upstroke, while
birds with pointed wings tend to adduct only their
wrists and supinate their handwing (Figure 10.16).
There are exceptions to this general pattern. For
example, Galliform birds, with rounded wings,
supinate their handwing during upstroke of
take-off flight (Tobalske & Dial, 2000). There is
someargument that a supinated, extendedhandw-
ing can produce useful lift, drag, or inertial forces,

potentially representing a precursor to the hum-
mingbird-style wingbeat, but such functions have
notyetbeenclearlyrevealed(Tobalske,2000,2007;
Tobalske & Biewener, 2008). The ability to
supinate the handwing has been attributed to
wrist anatomy in the mallard duck (Anas platyr-
hynchos; Vasquez, 1992); intriguingly, Vasquez
(1992) observed that the relevant hummingbird
wrist anatomy was different from that of the
duck.

The ability to hover permits hummingbirds to
exploit nectar, a concentrated source of glucose, as
a food source, and recent study demonstrates that
glucose oxidation in hummingbirds requires less
oxygencomparedwith fatty-acidoxidation (Welch
et al., 2007). Other small nectivorous species rou-
tinely hover for brief intervals (& 15 s). These
include two passerine groups: sunbirds (Nectari-
niidae;Hambly et al., 2004;K€ohler et al., 2006) and
honeyeatersMeliphagidae (Collins&Clow, 1978).
Unfortunately, quantitative descriptions are lack-
ing for wing kinematics and other details of flight
styles in sunbirds and honeyeaters; such data
would likely improve understanding about the
relative specialization of hummingbirds and the
processes that led to the independent evolution of
hovering ability in what are hypothesized to be
relatively distantly related clades (Sibley & Ahl-
quist, 1990; Livezey & Zusi, 2007).

Metabolic data for hovering sunbirds and hon-
eyeaters reveal that hovering is more costly in
terms of energy than slow or fast forward flight

Fig. 10.15 Hummingbird wing
presentation and flow field in the
wake at mid-downstroke (a) and
mid-upstroke (b). (a) A red line is
drawn above the dorsal surface of
thewing tohighlight thecamberof
the wing. (b) During upstroke, the
proximal part of the wing (red line)
is not as supinated as the distal
portion (yellow line). The vector
scale is at top right. (FromWarrick
et al., 2005.) [This figure appears in
color as Plate 10.15.]
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(Hambly et al., 2004). In contrast, data from hum-
mingbirds suggests that there is no significant
increase in metabolic power between hovering
and forward flight up to speeds of 7ms"1

(Berger, 1985; Ellington, 1991). This suggests
that hummingbirds are uniquely efficient at
hovering such that costs vary according to a
“J-shaped” curve with flight speed rather than a
“U-shaped” curve that may be observed when
other species are flown over a wide range of speeds
(Bundle et al., 2007). One proposed mechanism
that could account for higher efficiency in hum-
mingbirds is elastic energy storage in the flight
muscles during deceleration of thewing at the end
of each half stroke (Wells, 1993)

Given their unique wingbeat patterns
(Figure 10.15) and highmass-specificmetabolism,
what ultimately limits hovering performance in
hummingbirds? This question has been explored
in laboratory experiments inwhich air density and
the partial pressure of oxygen are varied within a
sealed chamber (Chai & Dudley, 1995, 1996;
Altshuler et al. 2001; Altshuler & Dudley 2003),
and also with measurements of hovering perfor-
mance in the field along elevational gradients in
mountains (Altshuler et al., 2001, 2004; Atshuler

& Dudley, 2003). These studies indicate that var-
iation in air density is a more significant con-
straint than oxygen availability even though low
partial pressures of oxygen canmake it impossible
for hummingbirds to sustain hovering (Altshuler
et al., 2001). As air density decreases, humming-
birds compensate by increasing wingbeat amplti-
tude but not wingbeat frequency, and when
wingbeat amplitude reaches 180% they can no
longer hover (Chai & Dudley, 1995). Populations
living at higher altitudes compensate for low
density by having relatively longer wings
(Altshuler et al., 2004). Increasing oxygen avail-
ability does not improve performance at low air
densities (Altshuler et al., 2001).
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